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Abstract Magnetic photonic crystals are spatially periodic dielectric composites
with at least one of the constitutive components being a magnetically 
polarized material. We show that the electrodynamic properties of
magnetic photonic crystals with proper configuration correspond to those
of hypothetical media with huge linear magnetoelectric effect. In
particular, such composites can display strong asymmetry ω(k) ≠ ω(−k) of 
the electromagnetic dispersion relation, which can result in a number of
interesting phenomena, including the electromagnetic unidirectionality. A
unidirectional medium, being perfectly transmissive for electromagnetic 
wave of certain frequency, freezes the radiation of the same frequency
propagating in the opposite direction in the form of a coherent standing
wave with zero group velocity. At microwave frequencies, unidirectional
photonic crystals can be made of common ferro- or ferrimagnetic 
materials alternated with anisotropic dielectric layers. 
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1. Electrodynamics of magnetoelectric media 
Electrodynamics of magnetoelectric media can be described by the standard 
time-harmonic Maxwell equations 

, ,ω ω
× = × = −∇ ∇

i i
c c

E B H D    (1) 

 with linear material relations  
( ) ( ) ( ) ( ), .= ω + ω = ω + ωε χ µ χTD E H B H E   (2) 

 where ε(ω) and  µ(ω) are the electric permittivity and magnetic permeability 
tensors,  χ(ω) is the tensor of linear magnetoelectric response. Unlike  ε(ω) 
and  µ(ω), the tensor  χ(ω) is odd with respect to time reversal R and space 
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inversion I. This implies that  χ = 0 in all nonmagnetic and/or 
centrosymmetric media [1,2]. More specifically 

0, only if  ,≠ ∉χ ∉R G I G     (3) 
where G is magnetic symmetry group of the medium. 
 A remarkable manifestation of linear magnetoelectric effect is the 
phenomenon of electromagnetic spectral asymmetry 

( ) ( )ω ≠ ω −k k

g G

k

     (4) 
 which can occur exclusively in magnetoelectric media (see, for example, 
[3], and references therein). For a particular direction of the wave vector k, 
the spectral asymmetry (4) can occur only if none of the symmetry 
operations from G reverses the direction of k  

( ) ( ) only if for all .ω ≠ ω − ≠ − ∈gk k k k    (5) 
Obviously, if the symmetry group G includes time reversal and/or space 
inversion, the criterion (5) cannot be satisfied 

if or , then ( ) ( ) for any .∈ ∈ ω = ω −R G I G k k   (6) 
 Nor can such a medium display the linear magnetoelectric effect. 

For the majority of dielectric materials, the linear magnetoelectric effect 
is prohibited by symmetry. But even in those cases where it is allowed, the 
magnitude of the effect is very small. In known magnetoelectric crystals the 
magnitude of nonzero components of magnetoelectric tensor χ does not 
exceed 10−3 – 10−4 [2]. As a consequence, the remarkable properties of 
magnetoelectrics featuring electromagnetic spectral asymmetry (4) have not 
found any significant application. In addition, natural magnetoelectric 
crystals often have complicated and unpredictable domain structure that 
further suppresses their nonreciprocal properties and makes them 
unattractive for practical use. Our objective here is to introduce 
nonreciprocal dielectric composites, known as magnetic photonic crystals, as 
an alternative to natural magnetoelectric materials. Although nonreciprocal 
photonic crystals do not display static magnetoelectric effect, their 
electrodynamics is similar to that of hypothetical magnetoelectric materials 
with highly enhanced nonreciprocal properties. In particular, they can 
display extremely strong asymmetry (4) of electromagnetic dispersion 
relation, which is unachievable in any natural homogeneous material. The 
strong spectral asymmetry, in turn, can result in the unique phenomenon of 
electromagnetic unidirectionality [4,5] when electromagnetic waves can 
propagate through the medium only in one of the two opposite directions.  
2. Symmetry of magnetic photonic crystals 
Photonic crystals are spatially periodic arrays of two or more different 
dielectric components. In magnetic photonic crystals, at least one of the 
constituents is a magnetically polarized material (see, for example, [8] and 
references therein). At the frequency range of interest, all the constitutive 
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components are presumed electromagnetically lossless. As a consequence of  
spatial periodicity, the electromagnetic frequency spectrum of a photonic 
crystal develops a band-gap structure similar to that of electrons in a crystal 
lattice [7]. We assume that each of the constitutive components of photonic 
crystal is a uniform dielectric material satisfying conventional constitutive 
relations 

( ) ( ),= ω = ωε µD E B H     (7) 
 with Hermitian material tensors 

( ) ( ) ( ) ( )† †,ω = ω ω = ωε ε µ µ .    (8) 
The property (8) of Hermitivity implies electromagnetic losslessness of the 
medium. The tensors ε(ω) and  µ(ω) are different in different components of 
the periodic array. The absence of magnetoelectric terms in (7) implies that 
each uniform constituent, if it fills the entire space, has perfectly symmetric 
electromagnetic dispersion relation  

( ) ( ),ω = ω −k k     (9) 
which is the case with all non-magnetic and overwhelming majority of 
magnetic materials. At the same time we expect that spatially periodic array 
of such "non-magnetoelectric" components can support essentially 
asymmetric electromagnetic spectrum. In other words, in magnetic photonic 
crystals, the property (4) of bulk spectral asymmetry can be achieved by 
proper space arrangement of constitutive components, rather than by 
incorporating magnetoelectric materials [4]. 
 From symmetry standpoint, photonic crystals, being spatially 
periodic, can be viewed as artificial macroscopic crystals. Therefore, every 
photonic crystal can be assigned certain magnetic symmetry group G, which 
along with rotations, reflections, and translations may also include time 
reversal operation R combined with some space transformations [1]. 
Knowing magnetic symmetry G of the periodic array, one can apply the 
criterion (5) to find out whether or not one can expect asymmetric dispersion 
relation for a particular direction of the wave vector k . This can only occur 
if the symmetry group G is on the list of those compatible with linear 
magnetoelectric effect [1]. It does not mean, though, that the magnetic 
photonic crystal can display any static magnetoelectric effect. 
 At first sight, the problem of assigning magnetic symmetry group G 
to a photonic crystal seems to be quite straightforward. Indeed, knowing the 
geometry of the periodic array and the symmetry Gi

0 of each individual 
constitutive component, one can immediately obtain the exact magnetic 
symmetry G0 of the photonic crystal. The so obtained symmetry group G0 
will be referred to as the true symmetry group of photonic crystal. By 
definition, the periodic array is invariant under operations from the true 
symmetry group G0. 
 The important point, though, is that the symmetry of the Maxwell 
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equations (1) together with the constitutive relations (7) can be higher than  
G0. Indeed, as far as electrodynamics is concerned, each constitutive material 
of the periodic array is represented by the respective material tensors ε(ω) 
and  µ(ω) in the relations (7). For a particular constitutive component i, the 
symmetry Gi of the respective material tensors ε(ω) and µ(ω) can be higher 
than the symmetry  Gi

0 of the material itself. For instance, both ε(ω) and 
µ(ω), being second rank tensors, are always centrosymmetric regardless of 
whether or not the material itself supports space inversion. The above 
argument shows that the symmetry group G that describes the 
electrodynamics of photonic crystal can be higher compared to its true 
symmetry group G0. Hereinafter, the group G will be referred to as the 
electromagnetic symmetry group. Obviously,  G0 ⊆ G. 
 If indeed the electromagnetic symmetry group G appears to be 
higher than the true symmetry group  G0, one can expect the situation where 
a particular effect, such as spectral asymmetry, is prohibited by G but 
allowed by  G0. This situation implies that although this particular effect can 
occur, it is associated with physical processes unaccounted for by the 
Maxwell equations (1) with conventional constitutive relations (7). All such 
interactions and effects are presumed insignificant. They may include, but 
are not limited to: electrostriction and/or magnetostriction, space dispersion 
(e.g., reciprocal optical activity of noncentrosymmetric materials [1]), 
surface effects at the interfaces between different components of the 
photonic crystal, magnetoelectric effect in constitutive materials (if any). 
Hereinafter, we will focus exclusively on the robust bulk electrodynamic 
effects which are accounted for by the Maxwell equations (1) with the 
conventional constitutive relations (7). Thus, our symmetry consideration 
will be based on the electromagnetic symmetry group G, rather than on its 
subgroup G0. Note that in many cases the two symmetries are simply 
identical (G  ≡ G0). An example to the contrary is a photonic crystal with a 
ferroelectric constitutive component. 
 A photonic crystal can display electromagnetic spectral asymmetry 
(4) only if its symmetry group G includes neither time reversal nor space 
inversion. If none of the constitutive components of a photonic crystal 
supports any kind of spontaneous magnetic order, nor is an external 
magnetic field applied, then the photonic crystal certainly possesses time 
reversal symmetry R and supports perfectly symmetric dispersion relation 
(9). Thus, asymmetric dispersion relation can be found exclusively in 
magnetic photonic crystals. The distinguishing feature of the material tensors 
ε(ω) and µ(ω) in magnetically polarized media is that both tensors are 
complex 

( ) ( ) ( ) ( ) ( ) ( ), ,∗ ∗ω = −ω ≠ ω ω = −ω ≠ ωε ε ε µ µ µ  
while in lossless nonmagnetic media the tensors  ε(ω) and µ(ω) are real and 
symmetric  
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( ) ( ) ( ) ( ) ( ) ( ), .∗ ∗ω = −ω = ω ω = −ω = ωε ε ε µ µ µ  
 In homogeneous media, the imaginary (skew-symmetric) parts of  
ε(ω) and µ(ω) are responsible for the nonreciprocal effect of Faraday 
rotation, while in periodic heterogeneous media the same terms can also 
cause the effect (4) of electromagnetic spectral asymmetry. In fact, the 
degree of electromagnetic spectral asymmetry is directly related to the 
magnitude of Faraday rotation in the magnetic constituent of photonic 
crystal. Note that in the static limiting case ω = 0, the material tensors ε(ω) 
and µ(ω) become real and symmetric, implying that all electromagnetic 
nonreciprocal effects vanish as ω → 0. By contrast, in natural 
magnetoelectric crystals, where the electromagnetic spectral asymmetry is 
associated with the tensor χ in Eq (2), the magnetoelectric effect persists 
even if ω → 0, although it is extremely small at all frequencies. 
 Unlike the situation with time reversal symmetry R, the space 
inversion I is always supported by both material tensors ε(ω) and µ(ω) in 
every uniform constitutive component of the composite structure, regardless 
of presence or absence of magnetic and/or electric polarization. To remove 
space inversion from electromagnetic symmetry group G of the periodic 
array and, thereby, to allow for electromagnetic spectral asymmetry, one has 
to choose a proper spatial arrangement of the constitutive components. To 
put it differently, the structural geometry of the photonic crystal must be 
complex enough not to support space inversion. 

 To sum up, we can state that only magnetic photonic crystals with 
special geometry can support asymmetric electromagnetic dispersion relation 
(4). The criterion (5) is just a necessary condition for spectral asymmetry. 
Even if this condition is met, the effect of spectral asymmetry may appear to 
be negligible or even ruled out by physical reasons different from those 
imposed by magnetic symmetry. To find out if a photonic crystal satisfying 
the criterion (5) does display the electromagnetic spectral asymmetry, one 
has to go beyond the symmetry consideration and deal with the Maxwell 
equations (1) in the heterogeneous medium. Several specific examples are 
considered in the nest section. 
3. Nonreciprocal periodic stacks 
Photonic crystals can have one-, two- or three-dimensional periodicity. One-
dimensional photonic crystals are commonly referred to as periodic stacks, 
or multilayers. The symmetry arguments based on the criterion (5) for 
spectral asymmetry can be applied with equal ease to photonic crystals of 
any dimensionality. But if we want to go further and actually solve the 
Maxwell equations in the composite medium, then the case of one-
dimensional periodicity is the most attractive. On the other hand, magnetic 
multilayers appear to be the most practical composites supporting strong 
electromagnetic spectral asymmetry (4). Therefore, in further consideration 
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we will focus exclusively on periodic magnetic stacks. 
 Let us start with periodic stacks with just two different layers in a 
unit cell. Electromagnetic symmetry group G of such a periodic array always 
supports space inversion symmetry with the center of inversion in the middle 
of each uniform layer. Therefore, a periodic stack composed of two 
alternating layers will never display electromagnetic spectral asymmetry, 
regardless of the materials of the layers. Let us reiterate that referring to the 
electromagnetic symmetry group G rather than to the true magnetic 
symmetry group G0 of the photonic crystal, we disregard those presumably 
insignificant effects which cannot be accounted for using the time-harmonic 
Maxwell equation (1) with the conventional constitutive relations (7). In 
many cases, though, the symmetry groups G and G0 are simply identical. 
 
A periodic stack with asymmetric bulk dispersion relation 
 
Consider magnetic periodic stacks with three layers in a unit cell. In this case 
there is a possibility of removing space inversion from the electromagnetic 
symmetry group G of the periodic array. A simple example of the kind is 
shown in Fig . 1. 

F21

L
 

Figure 1. A simplest periodic magnetic stack supporting asymmetric bulk dispersion 
relation. A unit cell L of this stack comprises three layers: two anisotropic dielectric layers 1 
and 2 with misaligned in-plain anisotropy (the  A - layers), and one magnetic layer F with 
magnetization shown by the arrows. 

 
The F – layers in Fig. 1 are ferromagnetic with magnetization parallel to 

the z - direction. The respective material tensors are 
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The real parameters α and β are responsible for circular birefringence 
(Faraday rotation), both of them are odd functions of frequency ω. At 
frequencies below 1012 Hz, the dominant contribution to the Faraday rotation 
usually comes from the "magnetic" parameter β, which can become 
particularly large in the vicinity of magnetic resonance. The periodic array in 
Fig. 1 can display strong spectral asymmetry only if either of the two 
gyrotropic parameters α and β is large enough. Specifically, at least one of 
the two quantities α/εF  or β/µF must be larger than 10−1. 
 For simplicity, the A - layers are presumed nonmagnetic 
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The term "nonmagnetic" implies that both material tensors are real and 
symmetric. Parameters δ and ∆ describe the in-plane anisotropy, while the 
angle φ defines the orientation of the principle axes of the tensors ε(ω) and 
µ(ω) in the x-y plane. All A - layers are made of the same dielectric material 
and have the same thickness. The only parameter that may differ in different 
A - layers is the orientation φ. Another necessary condition for the periodic 
array in Fig. 1 to display strong spectral asymmetry is that the in-plane 
dielectric anisotropy of the A - layers is strong enough. Specifically, at least 
one of the two quantities δ/εA and/or ∆/µA is significant (10−1 or larger). 
 All essentially different periodic arrays of the A - and  F - layers 
with three layers in a primitive cell are equivalent to a single one shown in 
Fig. 1. A primitive cell comprises one F - layers and two A - layers with 
different orientations  φ1 and φ2. The most critical parameter of this structure 
is the misalignment angle φ = φ1 − φ2 between the adjacent A - layers. This 
angle determines the electromagnetic symmetry group G of the stack, along 
with the symmetry of its electromagnetic dispersion relation. The results are 
summarized in the following table 
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Table 1.
Misalignment angle Magnetic symmetry Spectral symmetry

0 ( ) ( ) for all 
/ 2 4 ( ) ( )  for 

0, / 2 2 2 2 ( ) ( )  for 

′ ′φ = ω = ω −
′ ′φ = π ω = ω −

′ ′φ ≠ π ω ≠ ω −
&
&

m m m
m m z

z

k k
k k k
k k k

k

 
Note that in the case φ = 0, the three layered unit cell in Fig. 1 reduces to a 
two layered cell with doubled thickness of the A - layer. As we already 
know, the electromagnetic symmetry group of a periodic stack with two-
layered unit cell always supports space inversion and, therefore, displays 
symmetric dispersion relation ω(k) = ω(−k) for an arbitrary direction of the 
wave vector k, regardless of the materials of the layers.  

Typical numerical example of electromagnetic dispersion relations of the 
nonreciprocal periodic array in Fig. 1 is shown in Fig. 2. 
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Figure 2. Example of electromagnetic dispersion relations ω(k) of the nonreciprocal periodic 
stack in Fig. 1. Three graphs correspond to three different values of the misalignment angle φ 
between adjacent A - layers. 
 
In accordance with the Table 1, the spectral asymmetry (4) for k∥z exists 
only if the misalignment angle φ is not a multiple of π/2. 
 The above example presents the simplest and the most symmetric 
periodic stack supporting the bulk spectral asymmetry. More examples can 
be found in Ref. [4]. 
4. Electromagnetic unidirectionality 
Strong electromagnetic spectral asymmetry has various physical 
consequences, one of which is the effect of unidirectional wave propagation. 
Suppose that at k = k0, ω = ω0, one of the spectral branches ω(k) develops a 
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stationary inflection point  
( ) ( ) ( )0 0 00; 0; 0,′ ′′ ′′′ω = ω = ω ≠k kk kkkk k k    (13) 

as shown in Fig. 3(a). 
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Figure 3. (a) A fragment of asymmetric dispersion relation ω(k) of the periodic stack shown 
in Fig. 1. At k = k0 and ω = ω0 this spectral branch develops a stationary inflection point 
associated with electromagnetic unidirectionality and the frozen mode. ωb is the edge of the 
frequency band.  (b) The respective transmittance τ of the nonreciprocal semi-infinite slab vs. 
frequency. At the frequency ω0 of stationary inflection point, τ is close to unity, which implies 
that the incident wave is almost completely converted into the frozen mode with zero group 
velocity and gigantic amplitude. The values of ω and k are expressed in units of c/L and 1/L, 
respectively. 
 
 With certain reservations, the energy velocity of electromagnetic 
wave coincides with its group velocity u(k) = ωk′ (k). At frequency ω = ω0 
there are two Bloch waves: one with k = k0 and the other with  k = k1. 
Obviously, only one of the two waves can transfer electromagnetic energy – 
the one with k = k1 and the group velocity u(k1) < 0. The Bloch eigenmode 
with k = k0 has zero group velocity u(k0) = 0 and does not transfer energy. 
This latter eigenmode associated with stationary inflection point (13) is 
referred to as the frozen mode. As one can see in Fig. 3(a), none of the two 
eigenmodes with ω = ω0 has positive group velocity and, therefore, none of 
the electromagnetic eigenmodes can transfer energy from left to right at this 
particular frequency! Thus, a photonic crystal with the dispersion relation 
similar to that in Fig. 3(a), displays the property of electromagnetic 
unidirectionality at ω = ω0. Such a remarkable effect can be viewed as an 
extreme manifestation of the spectral asymmetry (4). 
 The effect of electromagnetic unidirectionality can occur in 
magnetic photonic crystals made up of common dielectric and ferro- or 

12ferrimagnetic components (at least at frequencies below 10  Hz). There are 
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two key physical requirements for that: 
1) The electromagnetic symmetry group G of the periodic array must be 

2) r birefringence 

3) ne anisotropy (at 

Fail ditions 2 and/or 3 does not formally rule out the 

lectromagnetic properties of a semi-infinite unidirectional slab 

onsider a plane electromagnetic wave propagating from left to right and 

compatible with the criterion (5) for spectral asymmetry. 
The magnetic constituent must display significant circula
at frequency range of interest (at least 10%, or more). 
The anisotropic layers must display significant in-pla
least 10%, or more). 
ure to satisfy the con

phenomenon of unidirectionality, but it would obscure the effect. Indeed, 
weak Faraday rotation or weak anisotropy leads to a small value of the third 
derivative  ωk′'' (k) in (13), which, in turn, pushes the stationary inflection 
point ω0 in Fig. 3(a) too close to the photonic band edge ωb. 
 
E
 
C
impinging on the boundary of a semi-infinite unidirectional photonic slab 
with dispersion relation shown in Fig. 3(a). Due to spectral asymmetry, the 
situation of the right-to-left propagation appears to be quite different and will 
not be discussed here (see the details in [5]). At the slab boundary, a portion 
of the incident wave is reflected back and the rest enters the semi-infinite 
slab. Let SI  > 0,  SR < 0, and ST > 0 be the energy flux of the incident, 
reflected and transmitted waves, respectively. Due to the energy 
conservation, SI  + SR  = ST. The transmittance ( τ ) and reflectance ( ρ ) of 
the semi-infinite slab are defined as  

, .τ = ρ = −T R

I I

S
S S

    (14) 

The energy conservation implies that ρ = 1 − τ . 
, the transmitted energy flux  

T  insid

S

 In the case of a single propagating mode
S e the slab can be expressed in terms of the mode energy density WT  
and its group velocity u(k) 

( ) .=T TS u k W     (15) 
According to Eq (13) and Fig. 3(a), the group velocity u(k) of the transmitted 
wave vanishes as ω → ω0 and k → k0. At the same time, the transmittance τ 
along with the energy flux ST  remains finite even at ω = ω0, as illustrated in 
Fig. 3(b). This implies that the electromagnetic field amplitude inside the 
unidirectional slab increases dramatically in the vicinity of the frozen mode 
frequency ω0

2 / 3
0 , as ,−ω − ω ω→ ω∼TW 0    (16) 

while the wave slows down. In fact, the incident electromagnetic wave 
with frequency close to ω0 gets trapped inside the slab in the form of 
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coherent frozen mode with huge amplitude and nearly zero group 
velocity. Detailed mathematical analysis of such a remarkable 
phenomenon is carried out in [5,6]. 
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